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The extension of a particle �translational deviation� in an isotropic harmonic potential well is linearly
proportional and parallel to the applied force. In an anisotropic trapping potential, the extension is instead
related to the applied force by a compliance tensor. Using the focal spot of a high numerical aperture zone plate
to create an elliptical potential and microfluidics to apply a calibrated force, we measure the two-dimensional
extension of a trapped spherical particle. As a function of the orientation of the elliptical potential, the
extension sweeps out a circular trajectory, exhibiting extensions both parallel �coflow� and perpendicular �cross
flow� to the direction of the flow. The results fit well to a compliance tensor model.
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The gradient force optical tweezer enables contactless
manipulation of particles in suspension. In the absence of
external forces, the trapped particle is centered close to the
region of maximum intensity of a tightly focused laser �1,2�.
Under an applied force, the particle moves to an equilibrium
position, or extension, where the optical gradient force pro-
vides an equal and opposite restoring force. The force-
extension relationship is approximated well by a linear
spring up to distances of approximately one third of the par-
ticle diameter, at which point the restoring force is maximum
�3�. By observing particle extension, femtonewton and pi-
conewton forces �2,4� can be accurately measured provided
that the optical spring constant is known. The interaction
between hydrodynamic and optical forces �5–8� promises
many applications of particle manipulation and sorting in
microfluidic systems.

In addition to providing a linear restoring force, plane
polarized optical traps have also demonstrated a torque on
elliptical particles �8–12�. Rotation of the incident polariza-
tion state causes a nonspherical particle to rotate, transferring
angular momentum to the trapped particle. In this case, the
torque applied to the particle by the trapping laser is equal
and opposite to the rotational drag applied by the fluid. The
maximum torque applied to the particle occurs when the ori-
entation of the polarization leads the orientation of the rotat-
ing particle by 45° �10�. At larger rotation rates, the trapped
particle can no longer keep up, which is the rotational analog
of the linear escape velocity �13�.

In this Brief Report, we study a force equilibrium condi-
tion that is different from the two cited above. We trap a
particle in a microfluidic channel and measure the particle
extension as a function of the orientation of an elliptical
potential. Using the extension as a lever arm, the optical
beam is capable of applying torque to the spherical particle.
The result is a two-dimensional extension that consists of
components both parallel �coflow� and perpendicular �cross
flow� to the applied force. The optical torque is counteracted
by an opposite hydrodynamic torque, where both can be
readily determined because the moment arm and the force
are known. By measuring the cross-flow extension for a
fixed orientation of the elliptical potential, we can measure
the optical torque transferred to a particle even though the
particle itself has zero net angular momentum. The two-

dimensional extensions can be described by a compliance
tensor that therefore also describes the linear restoring force
and torque. By rotating the orientation of the elliptical poten-
tial, the particle traces out a circular trajectory because the
components of the extension vary sinusoidally in quadrature.

We perform optical trapping of 1.1 �m latex beads using
a 976 nm diode laser focused by a 1.30 numerical aperture
�NA� gold-on-glass zone plate �14�, shown in Figs. 1�a� and
1�b�. The experimental setup to load, trap, and measure bead
positions is further described in Ref. �14�. The zone plate is
fabricated on the inner chamber wall of a polydimethylsilox-
ane �PDMS� based microfluidic channel. Beads are trapped
in the focal volume, 2.9 �m �4� /nwater�, above the glass
substrate that seals the channel. Using a syringe pump to
generate pressure driven flow in the channel, we apply cali-
brated forces and measure the trapped particle extension.

Large numerical aperture focusing elements produce spots
with elliptical intensity distributions �15�. The ellipticity is
caused by an axial electric field component that elongates the
beam in the direction parallel to the incident linear polariza-
tion. Fresnel zone plates have an apodization factor that en-
hances the axial field component, producing a more elliptical

FIG. 1. �Color online� Fresnel zone plate tweezer integrated
with microfluidics. �a� Scanning electron micrograph of the gold-
on-glass zone plate. �b� Microscope image of a 1.1 �m sphere
trapped by the zone plate tweezer. �c� Schematic of the experimen-
tal setup. The zone plate is illuminated by a laser beam propagating
in Z that slightly overfills the zone plate aperture. The orientation of
the elliptical potential is controlled by rotating the incident polar-
ization P, where X is parallel to the fluid flow �coflow� and Y is
perpendicular to the fluid flow �cross flow�. P is in the X-Y plane.
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focal spot than an aplanatic lens �16�. Previously, we have
shown that the elliptical focal spot produced by a high NA
zone plate produces an elliptical trapping potential �17� that
has higher anisotropy than that produced by an aplanatic
objective lens �18�. Using a half-wave plate, the orientation
of the elliptical trapping potential can be continuously ro-
tated. Figure 1�c� shows a diagram of the experiment. A fluid
drag force is applied in the plane of the elliptical trapping
potential. Therefore, by rotating the incident polarization, the
major and minor axes of the elliptical potential can be ori-
ented with respect to the applied force.

In order to calibrate the applied fluid drag force, we first
measure the flow velocity at the location of the trapped bead.
This is done by observing the motion of particles in the flow
field at a variety of flow rates �6,7�. We perform position
measurements by evaluating the image centroid of fluores-
cence images using video microscopy. Particles are placed at
the position of interest by trapping them with the zone plate
and then released by blocking the trapping laser. By measur-
ing the time, �t, it takes for each particle to travel across the
field of view �30 �m�, we can determine the local velocity.
The uncertainty in velocity determination using this method
is proportional to 1 /��t. We find that the flow velocity
scales linearly with flow rate, but there is additional uncer-
tainty in the velocity fields we believe due to pressure tran-
sients in the channel and inlet and outlet tubings. For a laser
power of 50 mW, the zone plate tweezer can trap particles in
flows of velocities up to 225 �m /s, the linear escape veloc-
ity of the tweezer. Using these calibrated drag forces, we can
now investigate the particle extension under an applied force
as a function of the orientation of the elliptical potential.

The extension is related to applied force by the inverse of
the stiffness, which we term the “optical compliance.” We
restrict our investigation to the two-dimensional plane trans-
verse to the trapping laser propagation direction. The force-
extension relation follows Hooke’s law,

F� = KJ · r� , �1a�

r� = KJ−1 · F� = LJ · F� , �1b�

where F� is the applied Stokes drag force vector, equal to

6��av� , KJ is the optical stiffness tensor, LJ is the optical com-
pliance tensor, r� is the extension vector, � is the viscosity, a
is the sphere radius, and v� is the fluid velocity. Figure 2
shows the measured coflow extension when the elliptical po-
tential has its major axis parallel to the applied force in blue
�dark� and perpendicular to the applied force in red �light�.
The extension divided by the applied force gives the magni-
tude of the appropriate element of the optical compliance

tensor LJ. These two cases represent the two diagonal terms
of the compliance matrix when the force is applied along one
of the two principal axes of the elliptical potential. In this
case, the optical trap applies a restoring force that is parallel
to the direction of the applied force from the flow. There is
no cross-flow extension, and consequently no applied optical
torque. In the measurement coordinate frame, the extension
is related to the optical compliance by

�rx

ry
� = �cos � − sin �

sin � cos �
��Lpar 0

0 Lperp
�� cos � sin �

− sin � cos �
�

��Fx

0
� , �2�

where Lpar is the optical compliance for forces and exten-
sions parallel to the incident polarization, Lperp is the optical
compliance for forces and extensions perpendicular to the
incident polarization, Fx is the fluid drag force, rx is the
coflow extension, and ry is the cross-flow extension. The
rotation matrices rotate the force into the principal coordi-
nate frame of the elliptical trapping potential and then back
into the observation coordinate frame. The blue �dark� curve
in Fig. 2 plots rx for a �=0° rotation and the red �light� curve
is rx for a �=90° rotation, where ry in both cases is small.
The compliance is not completely constant over the range of
applied forces. Instead, the trap is stiffer and more elliptical
at small extensions. In order to investigate the off-diagonal
compliance terms, we operate at a fluid force of 1.2 pN,
corresponding to a flow velocity of 115 �m /s. At this point
in the force-extension curve, Lperp is 72 nm/pN and Lpar is
145 nm/pN.

For an arbitrary rotation angle, LJ contains on- and off-
diagonal terms that couple the force in the flow direction to
co- �Lxx� and cross-flow �Lxy� extensions. Figure 3 shows
extension data as a function of time during the application of
a 1.2 pN fluid drag force, where each panel corresponds to a
different orientation of the elliptical potential. Extension data
are taken at 30 Hz for a total of 10 s. The syringe pump is
turned on at approximately 4 s and the channel and inlet/
outlet tubing take approximately 2 s to come to equilibrium
in pressure. The insets of Fig. 3 schematically illustrate the

FIG. 2. �Color online� Force coflow extension curves. Extension
is measured along the flow direction when the polarization of the
laser beam incident on the zone plate tweezer is parallel to the flow
in blue �dark� and perpendicular to the flow in red �light�. Uncer-
tainty in the applied force arises from uncertainty in the velocity
field applied by the syringe pump. Uncertainty in the extension is
below 3 nm and is not plotted. The optical compliance at 1.2 pN for
parallel polarization is approximately twice the optical compliance
for perpendicular polarization.
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particle positions after equilibrium has been reached. For a
sampling rate of 30 Hz, particle positions are uncorrelated
and using averaging we can obtain measurement accuracy of
3.1 and 4.3 nm /�Hz for the directions perpendicular and
parallel to the incident polarization, respectively. The exten-
sion is found by averaging the position of the first 100
samples and then subtracting by the average position of the
last 100 samples. The 0° and 90° cases correspond to the
cases in Fig. 2 where the force is applied along the principal
axes of the potential and there is no cross-flow extension. For
the 45° and −45° potential orientations, the cross-flow exten-
sion is clearly resolvable and points in both the positive �45°
orientation� and negative �−45° orientation� Y directions.

The cross-flow extension can be accurately predicted by
the off-diagonal terms of L. By multiplying through Eq. �2�,
the off-diagonal term �Lxy� can be shown to be
Lpar cos � sin �−Lperp cos � sin �. The maximum value for
the cross-flow extension occurs at a 45° orientation, and in
our case where Lpar�2Lperp, the off-diagonal compliance is
0.5Lperp. We observe 47 and −42	3 nm cross-flow exten-
sions for the 45° and −45° potential orientations, respec-
tively. The measured coflow extension for the perpendicular
polarization orientation is 95 nm and therefore agrees well
with the compliance tensor model. Plane polarization in-
duced torque has also been shown to peak when the relative
angle between the incident polarization and an elongated
trapped particle is 45° �10,11�, which in mechanics is called
the direction of maximum shear.

Figure 4 plots the equilibrium position under a constant
1.2 pN force for 12 orientations of the elliptical potential,
obtaining by rotating the polarization of the beam incident on
the zone plate. The data in blue �dark� are taken at 15° in-
crements of the polarization, with the same 1.1 �m sphere

used in all experiments. By evaluating Eq. �2� and using
�L=Lpar−Lperp and Lav= �Lpar+Lperp� /2, the coflow compli-
ance can be written as Lxx=Lav+�L cos�2�� /2 and the cross-
flow compliance as Lxy =�L sin�2�� /2. Due to the fact that

FIG. 3. �Color online� Exten-
sion time traces. Coflow extension
in blue �dark� and cross-flow ex-
tension in green �light� for four
different orientations of the ellip-
tical potential, −45°, 0°, 45°, and
90° for �a�, �b�, �c�, and �d�, re-
spectively. The orientation angle
describes the relative angle be-
tween the fluid flow and the polar-
ization angle or the major axis of
the elliptical potential. At 4 s, the
syringe pump is turned on and af-
ter reaching equilibrium applies a
force of 1.2 pN to the trapped
bead. Insets illustrate particle po-
sition after equilibrium is reached.
For orientations of 45° and −45°,
a cross-flow extension is resolv-
able that is pointed in opposite di-
rections. An offset has been added
to each extension trace so that
each has a mean value of zero.

FIG. 4. �Color online� Equiforce equilibrium positions. For a
constant 1.2 pN applied force, the equilibrium position as a function
of the orientation of the elliptical potential is plotted. Each data
point in blue �dark� corresponds to a 15° counterclockwise rotation
of the trapping potential, starting at an orientation of �=45°. The
data are fit to the optical compliance tensor model which predicts a
circular trajectory in red �light�. The origin of the two-dimensional
extension is the position of the sphere without an applied fluid
force. Uncertainty in the extension measurements is below 3 nm,
which is the size of the plotted dots.
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they are in quadrature, the extension traces out a circular
trajectory with a radius of �L /2. The extension curve com-
pletes one revolution on rotating the potential by 180° or
rotating the half-wave plate by 90°. The measured trajectory
is slightly elliptical, likely to result from the fact that the
dichroic beam splitter for the trapping laser induces some
ellipticity in the incident polarization state. Using an applied
linear force, we have shown that we can revolve a spherical
particle by rotating the incident linear polarization in the
back aperture of the focusing lens. The magnitude of this
effect is proportional to the ellipticity of the compliance �L,
consequently going to zero for an isotropic potential.

The center of our coordinate system is taken to be the
location where the sphere is trapped in the absence of flow.
For a given cross-flow extension and under a constant fluid
linear drag force, the fluid induced torque is 
=r�F. In
order for the sphere to be in equilibrium, the optical torque
must be canceled by an equal and opposite hydrodynamic
torque. Consequently, measuring the cross-flow extension is
a simple method to evaluate the applied optical torque. The
torque applied in our experiment at a 45° potential orienta-
tion is 56 pN nm. This value is comparable to other experi-
ments demonstrating torque using plane polarization rotation
�10,11� and larger than torque generated by orbital angular
momentum �8�. By controlling the relative orientation be-
tween the major axis of the potential and the applied fluid

force, we can apply and measure torques of this systems as
small as 3 pN nm /�Hz.

Although they are both electromagnetic forces, linear re-
storing force and torque are often considered separately and
are studied in different experiments. By displacing the equi-
librium position of a trapped particle using fluid flow, we
have shown that both linear force and torque can be mea-
sured on a spherical particle in the same experiment. The
coflow extension is a balance of the linear restoring force and
Stokes drag force and the cross-flow extension is a balance
of optical and hydrodynamic torque. Both are described by
an optical compliance tensor. The contributions of the linear
force and torque can be controlled by rotating the incident
linear polarization relative to the applied fluid force. By con-
tinuously rotating the incident polarization, we have demon-
strated a method to revolve a particle along an orbit with a
diameter of 	100 nm. The diameter of the revolution can be
increased either by applying a larger fluid force or by using a
more elliptical focal spot.
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